본문 바로가기
◈수학 학습◈/冊초등수학 심화冊

<최강TOT. 초등수학> 최상위 영역별 교재로 초등영재교육원과 영재선발고사를 대비해 다양한 창의융합 사고력 문제를 풀어보아요~

by 예똘맘 2017. 10. 12.





<최강 TOT>

- 초등수학 -



초등수학 내 같은 영역에 있어서
개념서에서 유형서, 상위권 수학까지 풀어보았다면,
최상위 문제에도 도전해볼까요?
^_^

그래서 수민양, 최상위 교재<최강TOT> 속 다양한 창의융합 사고력 문제들을 풀어보았어요~

'영재원 대비', '경시대회 대비'라 교재 표지에 나오던데 역시, 만만치 않은 문제들이였어요!




<최강TOT. 초등수학>교재로 '수 영역' 문제들을 풀어보는 수민양~

1부터 100까지의 수, 수 배열표와 크기 비교하기, 가르기와 모으기, 조건에 맞는 수 찾아보기가
'수 영역'에 해당하죠.
여기서 어려운 문제가 나와봐야 얼마나 어렵겠어? 싶겠지만, 천만의 말씀!!
절대로 만만하게 볼 '수 영역'이 아니였답니다. 와우..

쉬운 개념서에서 다양한 유형을 접해본 유형서들, 이후 상위권 교재에서도
그렇게 어렵다고 느끼지 못했던 수민양이지만
최상위 교재 문제들 앞에서는 좀 더 집중하게 되더라구요..

<최강TOT 수학>이
왜 초등영재교육원, 영재선발고사 대비 교재라 불리는지
단번에 알 수 있었어요!



그럼, <최상TOT. 초등수학>의 1단원 '수 영역'에 어떤 문제들이 수록되어 있는지
소개해 드릴께요~
^_^

창의융합 사고력 문제들을 하나 하나 살펴봅시다!

▼ ▼ ▼




<최강TOT. 초등수학> 교재 안에는
네 단계와 특강으로 구성되어 있었어요.
[Step 1. 경시 대비 문제], [Step 2. 도전 경시 문제], [Step 3. 코딩 유형 문제], [Step 4. 창의 영재 문제],
그리고 [특강. 영재원 창의융합 문제] 입니다.

[Step 1. 경시 대비 문제]에서는
경시대회 및 영재교육원에 대비하는 문제의 유형을 뽑아 주제별로 알아볼 수 있었어요~

"주제학습"의 예제를 통해 문제 해결 전략을 키우고, 이와 비슷한 문제를 풀어봅니다.




위와 같이 <최강TOT. 초등수학>의 [Step 1. 경시 대비 문제]를 살펴보면
반복을 중요시하여
"주제학습"에 이어 "따라풀기", "확인문제"와 "한번 더 확인"으로
비슷한 듯 다른 문제들을 통해
거의 두세 차례 이상 복습할 수 있게 구성되어, 너무 좋았어요~ ^_^bbb



Step 1에 이어, [Step 2. 도전 경시 문제]에서는 보다 다양한 유형의 문제를 접해볼 수 있었어요.

문제 아래에 "전략"을 제공해주네요~
문제 해결이 쉽지 않다면, 제공되는 전략을 이용해 보세요. ^_^



'고대의 수'는 쉽게 술술 풀린 반면, '1부터 100까지의 수'와 '가르기와 모으기'에서 다소 힘겨운 문제들이 있었네요.. ^^a

그래도 칭찬거리가 있었어요~
위 4번 문제는 <최강TOT>의 정답풀이집에 있는 해설대로 푸는 것 외
한 가지 더 풀이를 보여주었다는 거예요!
'전략'에 나온대로 전체수를 구하고 빼는 풀이 외에
재희가 15번이고 민주가 12번이니까
재희 뒤 10명에 3칸을 더해 "13명이 민주 뒤에 있다"라고 풀 수도 있다는 걸 보여준 수민양~ ^_^b 멋집니다! ㅎㅎ


[Step 3. 코딩 유형 문제]는 컴퓨터적 사고 기반을 접목한 문제가 수록되어 있었는데,
문제 해결을 위한 그 절차와 과정에 보다 더 집중하게 되는 문제들이였어요.

수민양, 자신감있게 코딩 유형 문제들을 잘 풀어주었어요~ ^_^b



[Step 4. 창의 영재 문제]는 Step 1과 Step 2에서 곤혹(?)을 치뤄서 그런가, 오히려 쉽고 재밌게 푸네요..ㅎㅎ

4번 문제를 어려워 하지 않을까 싶었는데, 왠걸~ 뚝딱! 한 번에 보고 x표시를 하네요. ^_^b 기특했어요~



5번과 6번 문제, 괜찮은 것 같아요~ 비슷한 문제로 다시 풀어볼 수 있으면 좋겠는데...

<최고수준 수학>교재처럼 '오답노트'앱으로 쌍둥이 문제를 뽑아낼 수 있으면 더 좋겠다, 싶은 아쉬움이 살짝 남아요.



마지막은 [특강. 영재원 창의융합 문제]예요.
영재교육원, 올림피아드, 창의융합형 문제를 학습하도록 구성되었다고 합니다.

이번 '수 영역'의 특강은 '노노그램(nonogram)'이라는 재미있는 문제를 풀어볼 수 있었어요.
다행(?)이도 머리를 식힐 겸 즐길 수 있는 문제였답니다~ ㅎㅎ




함께 살펴본 <최강TOT. 초등수학>, 어떠셨나요~? ^_^

저는 개인적으로 기본 개념만을 앞질러 가는 것 보다는
한 영역에 다양한 문제로 반복하여 복습하고, 심화하는 게 더 중요하다고 생각되요.
기본적인 수학에 좀더 깊이 있는 이해를 하면서 의미를 고민하는 것이 필요하다는 것이죠~
같은 개념의 영역일지라도 상당히 높은 수준의 내용을 배울 수 있다고 보거든요.
그래서 '수 영역'도 최고 심화 문제들은 어떤 것이 있을까, 궁금했었죠..
<최강TOT. 초등수학> 속 '수 영역' 문제들은 정말로 난위도 최상위 였답니다.
'수 영역'에서 이 보다 더 심화된 문제가 있을까? 싶을 정도로~ 만족해요! ^_^b




끝으로 '영재교육원'에 대해 막연한 분들을 위해
서울교대 교수님의 인터뷰 영상이 있어 공유해드릴께요, 시청해보세요~ 

https://youtu.be/o9qQmGz0oLo


결국 상위 30% 수준의 다양한 문제를 꾸준히 접해보는 것이 중요하다는 점이네요.


<최강TOT. 초등수학>으로 최상위 문제들을 다양하게 접해보세요~ 






본 포스팅은 천재교육 최강 TOT 교재 체험 이벤트 홍보를 위해

교재를 지급 받았으며 체험을 통해 느낀 점을 소비자의 시각으로 작성하였습니다.